👤

aratati ca ecuatia 1/x+1/y+1/z=1/2016 are cel putin o solutie alcatuita din numere naturale nenule si distincte doua cate doua.

Răspuns :


[tex]\it \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6} = 1 [/tex]

[tex]\it \dfrac{1}{2016}\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right) = \dfrac{1}{2016} \Leftrightarrow \dfrac{1}{4032}+\dfrac{1}{6048}+\dfrac{1}{12096} = \dfrac{1}{2016} [/tex]