Răspuns :
Cam multe
1/ Faci schimbarea de variabila x²=y xdx=dy/2 Integrala devine
∫dy/2*(y²-1)=1/2∫dy/(y²-1)=1/2l*1/2ln l(y-1)/(y+1)l+C=1/4ln l(y-1)/(y+1)l +c
revii la variabila x
F(x)=1/4*lnl (x²-1)/(x²+1)l+c
2)F(x)=∫x²dx/(16-x^6)= -∫dx/(x^6-16)
x³=y 3x²dx=dy x²dx=dy/3
-∫1/3 *dy/(y²-16)=-1/3*∫dy/(y²-(4)²)=-1/3*1/8*lnl (y-4)/(y+4)l+c=-1/24lnl(y-4)/(y+4)l+c
revii la variabila x
F(x)=-1/24*lnl(x³-4)/(x³+4)l+C
3)x²+9=y xdx=dy
FIntegrala devine
∫dy(y=lny+c revii la x
F(x)=ln(x²+9)+c
4)x²=y xdx=dy/2
1/2∫dy/(y²+1)=1/2 arctg y+C REvii la x
F(x)=1/2arctg x²+C
5)faci substitutia x³=y 3x²dx=dy x²dx=dy/3
1/3∫dy/(y²-25)=1/3 ∫dy/(y²-(5)²)=1/3*1/2*5 lnl(y-5)/(y=5)l+c =1/30*ln (y-5)/(y+5)l
F(x)=1/30*lnl(x³-5)/(x³+5)l+C
7)F(x)=∫(x+x³)dx/(1+x^4)=∫xdx/(1+x^4)+∫x³dx/(1+x^4)
F1(x)=∫xdx/(1+x^4)
Schimbare de variabila x²=y xdx=dy/2
F1=∫1/2*dy/(1+y²)=1/2∫dy/(1+y²)=1/2arctgy+c1
Revii la x
F1(x)=1/2arctgx²+c1
F2(x)=∫x³dx/(1+x^4)
1+x^4=y 4x³dx=dy x³dx=dy/4
F2=1/4∫dy/y=1/4lny+c2
F2=1/4ln(1+x^4)+c2
F(x)=1/2arctgx²+1/4ln(1+x^4)+C
1/ Faci schimbarea de variabila x²=y xdx=dy/2 Integrala devine
∫dy/2*(y²-1)=1/2∫dy/(y²-1)=1/2l*1/2ln l(y-1)/(y+1)l+C=1/4ln l(y-1)/(y+1)l +c
revii la variabila x
F(x)=1/4*lnl (x²-1)/(x²+1)l+c
2)F(x)=∫x²dx/(16-x^6)= -∫dx/(x^6-16)
x³=y 3x²dx=dy x²dx=dy/3
-∫1/3 *dy/(y²-16)=-1/3*∫dy/(y²-(4)²)=-1/3*1/8*lnl (y-4)/(y+4)l+c=-1/24lnl(y-4)/(y+4)l+c
revii la variabila x
F(x)=-1/24*lnl(x³-4)/(x³+4)l+C
3)x²+9=y xdx=dy
FIntegrala devine
∫dy(y=lny+c revii la x
F(x)=ln(x²+9)+c
4)x²=y xdx=dy/2
1/2∫dy/(y²+1)=1/2 arctg y+C REvii la x
F(x)=1/2arctg x²+C
5)faci substitutia x³=y 3x²dx=dy x²dx=dy/3
1/3∫dy/(y²-25)=1/3 ∫dy/(y²-(5)²)=1/3*1/2*5 lnl(y-5)/(y=5)l+c =1/30*ln (y-5)/(y+5)l
F(x)=1/30*lnl(x³-5)/(x³+5)l+C
7)F(x)=∫(x+x³)dx/(1+x^4)=∫xdx/(1+x^4)+∫x³dx/(1+x^4)
F1(x)=∫xdx/(1+x^4)
Schimbare de variabila x²=y xdx=dy/2
F1=∫1/2*dy/(1+y²)=1/2∫dy/(1+y²)=1/2arctgy+c1
Revii la x
F1(x)=1/2arctgx²+c1
F2(x)=∫x³dx/(1+x^4)
1+x^4=y 4x³dx=dy x³dx=dy/4
F2=1/4∫dy/y=1/4lny+c2
F2=1/4ln(1+x^4)+c2
F(x)=1/2arctgx²+1/4ln(1+x^4)+C
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!