👤

Să se calculeze:
a) [tex] \lim_{x \to 0} \frac{ln(1+ x^{2} )}{5 x^{2} } [/tex];
b) [tex] \lim_{x \to 0} \frac{ln(1+ \sqrt[3]{x}) }{ \sqrt[3]{5x} } [/tex].


Răspuns :

Avem limita remarcabila [tex] \lim_{u(x) \to \ 0} \frac{ln(1+u(x))}{u(x)}=1 [/tex]
a) [tex] \lim_{x \to \ 0} \frac{ln(1+ x^{2} )}{ x^{2} } \frac{1}{5}= \frac{1}{5} [/tex]
b)[tex] \lim_{x \to \ 0} \frac{ln(1+ \sqrt[3]{x}) }{ \sqrt[3]{x} } \frac{1}{ \sqrt[3]{5} }= \frac{1}{ \sqrt[3]{5} } [/tex]