aflati numerele rationale x care verifica egalitatile

Raspuns:
[tex]\displaystyle \frac{x}{\sqrt{\frac{900}{49} } -\sqrt{\frac{784}{225} }\times\frac{15}{7} } =\frac{\sqrt{676}-\sqrt{576} }{0,(5)\times\sqrt{\frac{1296}{625} } }[/tex]
[tex]\displaystyle \frac{x}{\sqrt{\frac{30^{2} }{7^{2} } } -\sqrt{\frac{28^{2} }{15^{2} } }\times\frac{15}{7} } =\frac{\sqrt{26^{2} }-\sqrt{24^{2} } }{\frac{5}{10} \times\sqrt{\frac{36^{2} }{25^{2} } } }[/tex]
[tex]\displaystyle \frac{x}{\frac{30}{7}-\frac{28}{15}\times\frac{15}{7} } =\frac{26-24}{\frac{1}{2}\times\frac{36}{25} }[/tex]
[tex]\displaystyle \frac{x}{\frac{30}{7}-\frac{28}{\not 15}\times\frac{\not 15}{ 7} } =\frac{2}{\frac{1}{\not 2} \times \frac{\not36}{25} }[/tex]
[tex]\displaystyle \frac{x}{\frac{30}{7}-\frac{ 28}{ 7} } =\frac{2}{\frac{18}{25} }[/tex]
[tex]\\ \displaystyle \frac{x}{\frac{2}{7} } =\frac{2}{\frac{18}{25} } \\ \\ x=\frac{2\times\frac{2}{7} }{\frac{18}{25} } \\ \\ x=\frac{4}{7} :\frac{18}{25} \\ \\ x=\frac{\not 4}{7} \times \frac{25}{\not 18} \\ \\ x=\frac{50}{63}[/tex]
[tex]\sqrt{x^{2} } =x[/tex]
[tex]\frac{x}{y} =x:y[/tex]