a){{[(1+2+3+.......100):1010]^2002×5^3:5^2003}^3-5^5}:10^2+5=
={{[(100×101/2):1010]^2002×5^3:5^2003}^2-5^5}:10^2+5=
={[(5050:1010)^2002×5^3:5^2003}^2-5^5}:10^2+5=
=[(5^2002×5^3:5^2003)^2-5^5]:10^2+5=
=[(5^2005:5^2003)^2-5^5]:10^2+5=
=[(5^2)^3-5^5]:10^2+5=
=[(5^4(5-1):10^2+5=
=(5^4×4):10^2+5=
=(5^4×2^2):10^2+5=
=5^2+5=30
b)(2^1)^2×{3^4×28-[3-(2^3-5^3×3^2×10^2-5^2):(9+4^2)]:10^4-2^2^0×3^4}=
=2^2×{3^4×28-[3-5^2(2^3×5-3^2×2^2-5^2):(3^2+2^4)]:10^4-2^1×3^4}=
=2^2×{3^4×28-[3-5^2(40-36-1):(3^2+2^4)]:10^4-2×3^4}=
=2^2×{3^4×28-[3-(25×3):(9+16)]:10^4-2×3^4}=
=2^2×{3^4×28-[3-(25×3):25]:10^4-2×3^4}=
=2^2×{3^4×28-(3-3):10^4-2×3^4}=
=2^2×[3^4×28-2×3^4]=
=2^2×[3^4×(28-2)]=
=2^2×3^4×26=
=8424
c)2^101:[(3×5-13)^98+2^105:(2^3×16)+8^33]×23=
=2^101:[2^98+2^105:(2^3×2^4)+2^99]×23=
=2^101:[2^98+2^105:2^7+2^99]×23=
=2^101:[2^98+2^98+2^99]×23=
=2^101:[2^98×(1+1+2^1]×23=
=2^101:(2^98×2^2)×23=
=2^101:2^100×23=
=2×23=46