Răspuns :
Explicație pas cu pas:
Pentru a determina ecuatia unei dreptei cand stim coordonatele a doua puncte de pe aceasta avem mai multe posibilitati.
Metoda 1 (cu determinant):
[tex]AB: \left|\begin{array}{ccc}x_A&y_A&1\\x_B&y_B&1\\x&y&1\end{array}\right|=0 \\AB: \left|\begin{array}{ccc}4&-3&1\\3&-4&1\\x&y&1\end{array}\right| =0\\AB:-16+3y-3x+4x-4y+9=0\\AB: x-y-7=0[/tex]
Metoda 2 (cu formula de determinare a ecuatiei dreptei cand stim coordonatele a doua puncte):
[tex]AB: \frac{x-x_A}{x_B-x_A}=\frac{y-y_A}{y_B-y_A}\\AB: \frac{x-4}{3-4}=\frac{y+3}{-4+3}\\AB: x-4=y+3//AB: x-y-7=0[/tex]
Metoda 3 (gasind vectorul director al dreptei AB si punand conditia ca A sau B sa apartina dreptei):
Vectorul director este:
[tex]\vec{AB}=(x_B-x_A)\vec{i}+(y_B-y_A)\vec{j}=-\vec{i}-\vec{j}[/tex]
Coordonatele vectorului director sunt:
[tex]\vec{AB}=(-1,-1)[/tex]
Ecuatia dreptei va fi:
[tex]AB: \frac{x-x_A}{x_{\vec{AB}}}=\frac{y-y_A}{y_{\vec{AB}}}\\AB: \frac{x-4}{-1}=\frac{y+3}{-1}\\AB: x-y-7=0[/tex]
Sau:
[tex]AB: \frac{x-x_B}{x_{\vec{AB}}}=\frac{y-y_B}{y_{\vec{AB}}}\\AB: \frac{x-3}{-1}=\frac{y+4}{-1}\\AB: x-y-7=0[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!