Răspuns :
Daca notam numarul 2013 cu x avem
[tex]x^{2}-2x+1=x^{2}-x-(x-1)=x(x-1)-(x-1)-(x-1)*(x-1)=(x-1)^2[/tex]
Atunci
[tex]A=\sqrt{(x-1)^{2}}=x-1=2013-1=2012[/tex] care este un nr natural
[tex]x^{2}-2x+1=x^{2}-x-(x-1)=x(x-1)-(x-1)-(x-1)*(x-1)=(x-1)^2[/tex]
Atunci
[tex]A=\sqrt{(x-1)^{2}}=x-1=2013-1=2012[/tex] care este un nr natural
A=√[2013(2013-2)+1]
A=√(2013x2011)+1
A=√4048143+1
A=√4048144
A=2012∈N
A=√(2013x2011)+1
A=√4048143+1
A=√4048144
A=2012∈N
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!