Răspuns :
În matematică, un număr rațional = este un număr real care se poate
exprima drept raportul a două numere întregi, de obicei scris sub formă
de fracție ordinară:
- a/b, unde b este nenul.
Doua numere rationale notat cu m/n si a/b sunt egale daca fractiile m/n si a/b sunt fractii echivalente adica daca m*b=n*a.
Relatia de egalitate in domeniul numerelor rationale are proprietatile :
1. reflexivitatea : a=a
2. simetria : a=b atunci b=a
3. tranzitivitatea : a=b si b=c atunci a=c
4. Relatia de egalitate in domeniul numerelor rationale avand proprietatile de reflexivitate, simetrie, tranzitivitate este o realtie de echivalenta.
Operatii cu numere rationale
Adunarea
Suma a doua numere rationale m/n si a/b este data de fractia (mb+ma)/nb.
Proprietati:
1. comutativitatea : a+b=b+a
2. asociativitatea : (a+b)+c=a+(b+c)
3. element neutru : a+0=0+a=a
4. elementul opus : a+(-a)=(-a)+a=0
Diferenta
Oricare ar fi numerele rationale a si b avem : a-b=a+(-b).
Altfel, daca dorim a scadea dintr-un numar rational a un alt numar rational b, adunam la numarul rational a opusul numarului rational (-b).
Operatia de scadere se poate efectua intre orice numere rationale.
Oricare ar fi a numar rationsl avem : a-0=a respectiv 0-a=-a.
Oricare ar fi a,b, c numere rationale daca a=b avem : a-c=b-c.
Oricare ar fi a, b, c, d numere rationale, daca a=b si c=d avem : a-c=b-d.
Produsul
Prin produsul a doua numere rationale m/n si a/b se obtine un al treilea numar rational notat cu c astfel c=(m*a)/(n*b).
Proprietati:
1. comutativitate : a*b=b*a
2. asociativitate : (a*b)*c=a*(b*c)
3. distribuitivitate : a*(b+c)=a*b+a*c
4. element neutru : a*1=1*a=a
5. element invers : a*(1/a)=(1/a)*a=1
Oricare ar fi a rational avem : a*(-1)=(-1)*a=-a
Oricare ar fi a,b,c rationale : a=b atunci a*c=b*c
Oricare ar fi a,b, c, d rationale : a=b, c=d atunci a*c=b*d
Impartirea
Prin catul a doua numere rationale m/n si a/b cu a, b, n diferite de 0 se obtine un al treilea numar rational notat c astfel :
c=(m/n)/(a/b)=(m/n)*(a/b)
deci se inmulteste deimparitul cu inversul impartitorului.
Proprietati:
1. a:1=a/1=a
2. 1:a=1/a=a²(-1)
3. a:(-1)=a/(-1)=-a
4. (-1)/a=(-1)/a=-a²(-1)
5. 0:a=0/a=0
6. a=b atunci a:c=b:c sau a/c=b/c
7. a=b, c=d atunci a:c=b:d sau a/c=b/d
Daca a, b sunt doua numere rationale pozitive rin media armonica intelegem numarul m, obtinut astfel:
m=2/[(1/a)+(1/b)]=(2ab)/(a+b)
* / =( inseamna supra ceva)
Sper ca te am ajutat!!!
- a/b, unde b este nenul.
Doua numere rationale notat cu m/n si a/b sunt egale daca fractiile m/n si a/b sunt fractii echivalente adica daca m*b=n*a.
Relatia de egalitate in domeniul numerelor rationale are proprietatile :
1. reflexivitatea : a=a
2. simetria : a=b atunci b=a
3. tranzitivitatea : a=b si b=c atunci a=c
4. Relatia de egalitate in domeniul numerelor rationale avand proprietatile de reflexivitate, simetrie, tranzitivitate este o realtie de echivalenta.
Operatii cu numere rationale
Adunarea
Suma a doua numere rationale m/n si a/b este data de fractia (mb+ma)/nb.
Proprietati:
1. comutativitatea : a+b=b+a
2. asociativitatea : (a+b)+c=a+(b+c)
3. element neutru : a+0=0+a=a
4. elementul opus : a+(-a)=(-a)+a=0
Diferenta
Oricare ar fi numerele rationale a si b avem : a-b=a+(-b).
Altfel, daca dorim a scadea dintr-un numar rational a un alt numar rational b, adunam la numarul rational a opusul numarului rational (-b).
Operatia de scadere se poate efectua intre orice numere rationale.
Oricare ar fi a numar rationsl avem : a-0=a respectiv 0-a=-a.
Oricare ar fi a,b, c numere rationale daca a=b avem : a-c=b-c.
Oricare ar fi a, b, c, d numere rationale, daca a=b si c=d avem : a-c=b-d.
Produsul
Prin produsul a doua numere rationale m/n si a/b se obtine un al treilea numar rational notat cu c astfel c=(m*a)/(n*b).
Proprietati:
1. comutativitate : a*b=b*a
2. asociativitate : (a*b)*c=a*(b*c)
3. distribuitivitate : a*(b+c)=a*b+a*c
4. element neutru : a*1=1*a=a
5. element invers : a*(1/a)=(1/a)*a=1
Oricare ar fi a rational avem : a*(-1)=(-1)*a=-a
Oricare ar fi a,b,c rationale : a=b atunci a*c=b*c
Oricare ar fi a,b, c, d rationale : a=b, c=d atunci a*c=b*d
Impartirea
Prin catul a doua numere rationale m/n si a/b cu a, b, n diferite de 0 se obtine un al treilea numar rational notat c astfel :
c=(m/n)/(a/b)=(m/n)*(a/b)
deci se inmulteste deimparitul cu inversul impartitorului.
Proprietati:
1. a:1=a/1=a
2. 1:a=1/a=a²(-1)
3. a:(-1)=a/(-1)=-a
4. (-1)/a=(-1)/a=-a²(-1)
5. 0:a=0/a=0
6. a=b atunci a:c=b:c sau a/c=b/c
7. a=b, c=d atunci a:c=b:d sau a/c=b/d
Daca a, b sunt doua numere rationale pozitive rin media armonica intelegem numarul m, obtinut astfel:
m=2/[(1/a)+(1/b)]=(2ab)/(a+b)
* / =( inseamna supra ceva)
Sper ca te am ajutat!!!
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!