Pentru orice a,b ∈ R notam E(a,b)=(a-2)(a-4)+(b+1)(b-5)-b.
a)Calculati valoarea expresiei E(a,b) pt a=-1 si b=1.
b)Aratati ca (a-2)(a-4)+(b+1)(b-5)≥b-10 pt orice a,b∈R...
VA ROGG AM NEVOIE URGETTTT...
E(a,b)=(a-2)(a-4)+(b+1)(b-5)-b; a. Pentru a=-1 si b=1 va rezulta: E(-1,1)=(-3)(-5)+2(-4)-1=15+(-8)-1=15-8-1=6; b. (a-2)(a-4)+(b+1)(b-5)=a²-4a-2a+8+b²-5b+b-5=a²-6a+8+b²-4b-5= a²-6a+b²-4b+3 unde a²-6a+b²-4b+3≥b-10 oricare ar fi a,b∈R;
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!