Răspuns :
[tex]\displaystyle \\
\texttt{Se da: } \\
A_{_{ABCD}} = 96~cm^2 \\
AB = 16 ~cm \\
BC = 12 ~cm \\ \\
Se~cere: \\
\texttt{Masurile unghiurilor paralelogramului.} \\ \\
Rezolvare: \\
\texttt{Folosim formula: } \\
A_{_{ABCD}} = AB \times BC \times sin(\widehat{ABC}) \\
In ~care~~~sin(\widehat{ABC})~~~ este necunoscuta. \\ \\
16 \times 12 \times sin(\widehat{ABC}) = 96 \\ \\
sin(\widehat{ABC}) = \frac{96}{16 \times 12} = \frac{96}{192} = \frac{1}{2} [/tex]
[tex]\displaystyle \\ \Longrightarrow ~m(\widehat{ABC})=30^o \\ m(\widehat{ADC}) = m(\widehat{ABC}) = 30^o ~~~(fiind~unghiuri ~opuse.) \\ \\ m(\widehat{ABC}) +m(\widehat{BCD}) = 180^o ~~~(fiind~unghiuri ~alaturate.) \\ \\ \Longrightarrow ~m(\widehat{BCD})=180^o -m(\widehat{ABC}) = 180^o - 30^o = 150^o \\ \\ m(\widehat{BAD})=m(\widehat{BCD}) = 150^o~~~(fiind~unghiuri ~opuse.) [/tex]
[tex]\displaystyle \\ \Longrightarrow ~m(\widehat{ABC})=30^o \\ m(\widehat{ADC}) = m(\widehat{ABC}) = 30^o ~~~(fiind~unghiuri ~opuse.) \\ \\ m(\widehat{ABC}) +m(\widehat{BCD}) = 180^o ~~~(fiind~unghiuri ~alaturate.) \\ \\ \Longrightarrow ~m(\widehat{BCD})=180^o -m(\widehat{ABC}) = 180^o - 30^o = 150^o \\ \\ m(\widehat{BAD})=m(\widehat{BCD}) = 150^o~~~(fiind~unghiuri ~opuse.) [/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!