Răspuns :
a)a3=3; a7=11 a15=?
a3=a1+2r. ;
a7=a1+6r
se formeaza un sistem: a1+2r=3 |•(-1)
a1+6r=11
=> -2r+6r=-3+11 => 4r=8 |:4 ----->r=2
Am aflat ca ratia este 2.
Aflam a1: a1+4=3--->a1= -1
a15=a1+14r----> a15= -1+28=27--> a15=27
b) a5=a1+4r
a8=a1+7r. iar se formeaza sistem: a1+4r=4 | •(-1)
a1+7r=10
3r=6 |:3---> r=2
Aflam a1: a1+4*2=4=> a1+8=4--+>a1= -4
a19=a1+18r => -4+ 18*2---> a19= 32
c)a1+r=3 |•(-1)
a1+8r=13
=> 7r=10---> r=10/7
Aflam a1: a1+10/7=3---->a1=11/7
a17=a1+16r => a17= 11/7+ 16*10/7---> a17= 171/7--> a17=171/7
a3=a1+2r. ;
a7=a1+6r
se formeaza un sistem: a1+2r=3 |•(-1)
a1+6r=11
=> -2r+6r=-3+11 => 4r=8 |:4 ----->r=2
Am aflat ca ratia este 2.
Aflam a1: a1+4=3--->a1= -1
a15=a1+14r----> a15= -1+28=27--> a15=27
b) a5=a1+4r
a8=a1+7r. iar se formeaza sistem: a1+4r=4 | •(-1)
a1+7r=10
3r=6 |:3---> r=2
Aflam a1: a1+4*2=4=> a1+8=4--+>a1= -4
a19=a1+18r => -4+ 18*2---> a19= 32
c)a1+r=3 |•(-1)
a1+8r=13
=> 7r=10---> r=10/7
Aflam a1: a1+10/7=3---->a1=11/7
a17=a1+16r => a17= 11/7+ 16*10/7---> a17= 171/7--> a17=171/7
[tex]\displaystyle a).a_3=3,~a_7=11,~a_{15}=?\\a_3=3 \Rightarrow a_{3-1}+r=3 \Rightarrow a_2+r=3\Rightarrow a_1+2r=3\Rightarrow a_1=3-2r\\a_7=11\Rightarrow a_{7-1}+r=11 \Rightarrow a_6+r=11 \Rightarrow a_1+6r=11 \Rightarrow \\ \Rightarrow 3-2r+6r=11 \Rightarrow -2r+6r=11-3 \Rightarrow 4r=8 \Rightarrow r= \frac{8}{4} \Rightarrow r=2 \\ a_1=3-2r \Rightarrow a_1=3-2\cdot2 \Rightarrow a_1=3-4\Rightarrow a_1=-1 [/tex]
[tex]\displaystyle a_{15}=a_{15-1}+r \Rightarrow a_{15}=a_{14}+r \Rightarrow a_{15}=a_1+14r \Rightarrow \\ \Rightarrow a_{15}=-1+14 \cdot 2 \Rightarrow a_{15}=-1+28 \Rightarrow \boxed{a_{15}=27}[/tex]
[tex]\displaystyle b).a_5=4 ,~a_8=10,~a_{19}=? \\ a_5=4 \Rightarrow a_{5-1}+r=4 \Rightarrow a_4+r=4 \Rightarrow a_1+4r=4 \Rightarrow a_1=4-4r \\ a_8=10 \Rightarrow a_{8-1}+r=10 \Rightarrow a_7+r=10 \Rightarrow a_1+7r=10 \Rightarrow \\ \Rightarrow 4-4r+7r=10 \Rightarrow -4r+7r=10-4 \Rightarrow 3r=6 \Rightarrow r= \frac{6}{3} \Rightarrow r=2 \\ a_1=4-4r \Rightarrow a_1=4-4 \cdot 2 \Rightarrow a_1=4-8 \Rightarrow a_1=-4 [/tex]
[tex]\displaystyle a_{19}=a_{19-1}+r \Rightarrow a_{19}=a_{18}+r \Rightarrow a_{19}=a_1+18r \Rightarrow \\ \Rightarrow a_{19}=-4+18 \cdot 2 \Rightarrow a_{19}=-4+36 \Rightarrow \boxed{a_{19}=32}[/tex]
[tex]\displaystyle c).a_2=3 ,~a_9=13,~a_{17}=? \\ a_2=3 \Rightarrow a_{2-1}+r=3 \Rightarrow a_1+r=3 \Rightarrow a_1=3-r \\ a_9=13 \Rightarrow a_{9-1}+r=13 \Rightarrow a_8+r=13 \Rightarrow a_1+8r=13 \Rightarrow \\ \Rightarrow 3-r+8r=13 \Rightarrow -r+8r=13-3 \Rightarrow 7r=10 \Rightarrow r= \frac{10}{7} \\ a_1=3-r \Rightarrow a_1=3- \frac{10}{7} \Rightarrow a_1= \frac{21-10}{7} \Rightarrow a_1= \frac{11}{7} [/tex]
[tex]\displaystyle a_{17}=a_{17-1}+r \Rightarrow a_{17}=a_{16}+r \Rightarrow a_{17}=a_1+16r \Rightarrow \\ \Rightarrow a_{17}= \frac{11}{7} +16 \cdot \frac{10}{7} \Rightarrow a_{17}= \frac{11}{7} + \frac{160}{7} \Rightarrow \boxed{a_{17}= \frac{171}{7} }[/tex]
[tex]\displaystyle a_{15}=a_{15-1}+r \Rightarrow a_{15}=a_{14}+r \Rightarrow a_{15}=a_1+14r \Rightarrow \\ \Rightarrow a_{15}=-1+14 \cdot 2 \Rightarrow a_{15}=-1+28 \Rightarrow \boxed{a_{15}=27}[/tex]
[tex]\displaystyle b).a_5=4 ,~a_8=10,~a_{19}=? \\ a_5=4 \Rightarrow a_{5-1}+r=4 \Rightarrow a_4+r=4 \Rightarrow a_1+4r=4 \Rightarrow a_1=4-4r \\ a_8=10 \Rightarrow a_{8-1}+r=10 \Rightarrow a_7+r=10 \Rightarrow a_1+7r=10 \Rightarrow \\ \Rightarrow 4-4r+7r=10 \Rightarrow -4r+7r=10-4 \Rightarrow 3r=6 \Rightarrow r= \frac{6}{3} \Rightarrow r=2 \\ a_1=4-4r \Rightarrow a_1=4-4 \cdot 2 \Rightarrow a_1=4-8 \Rightarrow a_1=-4 [/tex]
[tex]\displaystyle a_{19}=a_{19-1}+r \Rightarrow a_{19}=a_{18}+r \Rightarrow a_{19}=a_1+18r \Rightarrow \\ \Rightarrow a_{19}=-4+18 \cdot 2 \Rightarrow a_{19}=-4+36 \Rightarrow \boxed{a_{19}=32}[/tex]
[tex]\displaystyle c).a_2=3 ,~a_9=13,~a_{17}=? \\ a_2=3 \Rightarrow a_{2-1}+r=3 \Rightarrow a_1+r=3 \Rightarrow a_1=3-r \\ a_9=13 \Rightarrow a_{9-1}+r=13 \Rightarrow a_8+r=13 \Rightarrow a_1+8r=13 \Rightarrow \\ \Rightarrow 3-r+8r=13 \Rightarrow -r+8r=13-3 \Rightarrow 7r=10 \Rightarrow r= \frac{10}{7} \\ a_1=3-r \Rightarrow a_1=3- \frac{10}{7} \Rightarrow a_1= \frac{21-10}{7} \Rightarrow a_1= \frac{11}{7} [/tex]
[tex]\displaystyle a_{17}=a_{17-1}+r \Rightarrow a_{17}=a_{16}+r \Rightarrow a_{17}=a_1+16r \Rightarrow \\ \Rightarrow a_{17}= \frac{11}{7} +16 \cdot \frac{10}{7} \Rightarrow a_{17}= \frac{11}{7} + \frac{160}{7} \Rightarrow \boxed{a_{17}= \frac{171}{7} }[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Ne dorim ca informațiile furnizate să vă fi fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Revenirea dumneavoastră ne bucură, iar pentru acces rapid, adăugați-ne la favorite!